Nanotube electrodes improve solar cells

Pei Dong, a graduate student at Rice University, holds a lab-built solar cell that combines a carbon nanotube current collector and a sulfide-based electrolyte. The combination could make such solar cells more efficient and less expensive than current dye-sensitized units. (Credit: Jeff Fitlow/Rice University)






A dye-sensitized solar cell developed at Rice University and Tsinghua University replaces platinum with carbon nanotubes and iodine electrolyte with a sulfide-based electrolyte. The researchers hope to make dye-sensitized solar cells better and cheaper. (Credit: Jeff Fitlow/Rice University)








Arrays of vertically aligned single-walled carbon nanotubes (VASWCNTs) grown at Rice University are key to making better and cheaper dye-sensitized solar cells, an alternative to more expensive silicon solar cells. The arrays are transferred to conducting glass, topped with a second electrode of titanium oxide and surrounded by iodine-free electrolyte developed at Tsinghua University. (Credit: Lou Lab/Rice University)


Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom.” With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to .